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ABSTRACT 

In agriculture and food authentication, ensuring the correct classification of rice varieties such as 

Cammeo and Osmancik is crucial for maintaining supply chain integrity, quality control, and market 

pricing. Traditionally, this classification has been performed manually through visual inspection by 

experts who rely on physical characteristics such as grain size, shape, and texture. However, this manual 

system is time-consuming, labor-intensive, and highly prone to human error and subjectivity, often 

leading to misclassification and loss of consumer trust. The manual approach also lacks scalability when 

handling large datasets or real-time inspection at industrial scales. These limitations highlight the need 

for an automated, accurate, and scalable solution. Motivated by the growing importance of precision 

agriculture and the need to modernize quality assessment techniques, this project leverages machine 

learning and deep learning algorithms for rice variety classification using geometric features extracted 

from grain silhouettes. Specifically, it applies models like XGBoost and MLPClassifier to a 

morphological dataset consisting of measurements such as area, perimeter, major/minor axis lengths, 

eccentricity, extent real, and convex area, aiming to automate and enhance classification accuracy. The 

objective is to develop an intelligent GUI-based desktop application using Tkinter that enables both 

administrators and users to easily upload data, visualize metrics, and make predictions. Exploratory 

data analysis and feature standardization are performed to ensure model robustness, and model 

persistence is achieved using joblib for reusability. The proposed system significantly outperforms 

manual methods, with the MLPClassifier achieving a high accuracy of 92.78% compared to XGBoost’s 

61.42%, thus offering a reliable and automated alternative. This AI-driven approach ensures 

consistency, reduces dependency on human judgment, and paves the way for integration into real-time 

industrial applications where speed and accuracy are essential, marking a shift toward smarter and more 

efficient food authentication systems. 

Keywords: Rice Variety Classification, Food Authentication, MLPClassifier, Morphological Dataset, 

Geometric Features. 

1. INTRODUCTION 

India is one of the largest producers and exporters of rice, contributing around 22% of the global rice 

supply. With over 6,000 rice varieties cultivated across different regions, maintaining authenticity in 

rice classification is crucial to ensure market trust, fair trade, and food safety. Historically, rice 

classification has been performed manually through visual inspection or chemical testing, which are 

often time-consuming, expensive, and error-prone. The increasing demand for organic and premium 

varieties such as Cammeo and Osmancik has intensified the need for precise identification methods. 

According to a report by the Indian Council of Agricultural Research (ICAR), 15-20% of rice sold is 

often mislabeled, leading to economic losses and consumer dissatisfaction. This project proposes an AI-

driven classification system using geometric features of rice grains and machine learning models like 

XGBoost and MLPClassifier. It aims to automate, accelerate, and enhance the reliability of rice variety 
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classification for supply chain integrity. Rice variety classification plays a vital role in food 

authentication and pricing mechanisms. With applications in agriculture, food quality control, and trade 

regulation, automated systems can replace manual inaccuracies. Using machine learning improves 

precision and scalability. This project ensures accurate classification using grain morphological data. 

2. LITERATURE SURVEY 

[1,2,3]. In recent years, the combination of blockchain technology with artificial intelligence, big data, 

5G, and the industrial internet have been explored by researchers to strengthen regulatory capabilities, 

which has been mainly reflected in the following aspects [4,5,6]. Firstly, artificial intelligence (AI) and 

smart contracts were combined to solve the problem of redundancy of blockchain information and 

improved supervision efficiency [7,8]. Secondly, blockchain technology and big data technology were 

combined to unify different data sources and realize unified data supervision [9.10]. Thirdly, blockchain 

technology and 5G technology were combined to solve the problem of slow real-time data transmission 

[11,12]. Fourthly, the blockchain was combined with the industrial internet, and the precise traceability 

of regulatory information was achieved through identification analysis [13]. Compared with the 

traditional agricultural and food supply chain supervision model, the “blockchain+” model can ensure 

the safety and credibility of the data in the agricultural and food supply chain. The credible traceability 

and precise accountability of the agricultural products and food data can be realized, thereby improving 

the supervision of the agricultural and food supply chain efficiency and authenticity. 

The rice supply chain is characterized by complex links, diverse data types, and long life cycles. The 

application of the blockchain and smart contracts has promoted the digitization and intelligence of the 

rice supply chain, and the supervision of the rice supply chain by the regulatory authorities has been 

improved to a certain extent. However, as the amount of data has increased, the application of a 

blockchain and smart contracts in the supervision of the rice supply chain has encountered the following 

shortcomings. 

The research on blockchains in the rice supply chain is mostly on single-link blockchains such as the 

“production blockchain”, “processing blockchain”, and “storage blockchain” [14,15,16] 

3. PROPOSED SYSTEM 

Step 1: Dataset Collection 

The first and foundational step in this research involves the acquisition of a reliable and comprehensive 

dataset specifically curated for rice variety classification. The dataset used comprises images and 

feature-based attributes representing different varieties of rice grains. These features typically include 

grain length, width, perimeter, area, and shape-related metrics derived from high-quality samples. The 

dataset must be representative of various commonly cultivated rice varieties to ensure the model 

generalizes well. Publicly available rice datasets from Kaggle or UCI repositories, or datasets manually 

curated from agricultural research centers, are typically used for this purpose. The dataset serves as the 

backbone of the project, influencing the performance of both the existing and proposed models. 

Step 2: Dataset Preprocessing 

Once the dataset is collected, it undergoes meticulous preprocessing to ensure the data is clean, 

consistent, and ready for machine learning algorithms. The first task involves handling missing or null 

values, which may result from errors during data recording or inconsistencies in dataset formats. These 

values are either removed or imputed depending on the distribution and impact on the dataset. Next, 
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label encoding is carried out to convert categorical labels (e.g., rice variety names like Basmati, Jasmine, 

IR64) into numerical format so that machine learning models can interpret them effectively. In some 

cases, feature scaling or normalization is also applied to bring all numeric features to a similar range, 

ensuring that no feature dominates the learning process. This step significantly enhances model 

accuracy and training speed. 

Step 3: Existing Model – XGBoost Classifier 

As part of the benchmark comparison, the XGBoost Classifier is implemented in this research as the 

existing model. XGBoost is a robust and widely used ensemble learning algorithm based on decision 

trees and gradient boosting. It is chosen for its high efficiency, scalability, and superior performance in 

classification tasks. In this stage, the pre-processed dataset is divided into training and testing sets. The 

XGBoost model is trained using the training data and evaluated based on standard performance metrics 

such as accuracy, precision, recall, and F1-score. Hyperparameters like learning rate, max depth, and 

number of estimators are tuned to optimize the model’s predictive capability. This model serves as a 

baseline to compare how well the proposed MLP model performs. 

 

Fig. 1: Block Diagram 

Step 4: Proposed Model – MLP (Multi-Layer Perceptron) 

The final step involves designing and building the proposed model using a Multi-Layer Perceptron 

(MLP), a type of feedforward artificial neural network. Unlike traditional models like XGBoost, MLP 

is capable of capturing complex nonlinear relationships among input features, making it highly suitable 

for nuanced classification problems like rice variety detection. The MLP model is constructed using 

several layers — including an input layer matching the number of features, one or more hidden layers 

with ReLU activation, and a final output layer with softmax activation for multi-class classification. 

http://www.ijbar.org/


www.ijbar.org 
ISSN 2249-3352 (P) 2278-0505 (E) 

Cosmos Impact Factor-5.86 

 

 

 

 

Index in Cosmos 

APR 2025, Volume 15, ISSUE 2 

UGC Approved Journal 

 
 
  

 

Page | 1055 
 
 

The model is compiled with an appropriate optimizer (such as Adam), a loss function (such as 

categorical crossentropy), and is trained over multiple epochs to minimize classification error. The 

performance of the MLP model is then compared to the XGBoost classifier to analyze improvement in 

accuracy and generalization ability. The proposed system aims to demonstrate higher reliability and 

adaptability for real-world rice classification tasks in the agricultural supply chain. 

3.2 Data Splitting and Preprocessing 

Data preprocessing is a vital stage in the machine learning pipeline that directly impacts the accuracy 

and efficiency of predictive models. In this research on rice variety classification, preprocessing begins 

immediately after acquiring the dataset, ensuring that the raw data is transformed into a structured and 

consistent format suitable for modeling. The dataset typically includes several numeric features related 

to the physical characteristics of rice grains, such as length, width, area, perimeter, and compactness. 

Alongside these are class labels indicating the rice variety. However, before applying machine learning 

models, it is essential to cleanse and prepare the data appropriately to minimize noise and redundancy. 

The first step in preprocessing is the removal of null or missing values. Missing data, if not addressed, 

can skew model training and lead to unreliable predictions. In this research, records with missing values 

are either dropped or, if minimal, imputed using statistical methods such as mean or mode imputation. 

Next, label encoding is performed to convert categorical labels — such as rice variety names— into 

numeric format. This conversion is crucial because most machine learning algorithms require numerical 

input rather than text labels. 

After label encoding, the dataset is scaled using normalization or standardization techniques, ensuring 

that features are brought to a comparable range. This step prevents features with larger values from 

disproportionately influencing the model. Common scaling methods such as Min-Max Scaling or Z-

score Standardization are considered, depending on the distribution of the feature values. The scaling 

enhances convergence speed during training and ensures more stable and accurate performance. Finally, 

the cleaned and transformed dataset is split into training and testing subsets, typically in an 80:20 or 

70:30 ratio. The training set is used to teach the machine learning models, while the testing set is 

reserved for evaluating model generalization and performance on unseen data. In some experiments, 

cross-validation techniques like K-Fold are also applied to ensure robustness and prevent overfitting. 

This careful and comprehensive approach to data splitting and preprocessing lays a solid foundation for 

effective model training and accurate rice variety prediction. 

3.3 Model Building 

In this study, two primary machine learning algorithms have been utilized for rice variety classification 

the XGBoost Classifier as the existing model, and the Multilayer Perceptron (MLP) as the proposed 

model. Each model has been tested on the pre-processed dataset to evaluate and compare performance 

in terms of accuracy, precision, and prediction robustness. 

3.3.1 Proposed Algorithm: Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) is a class of feedforward artificial neural networks that consists of an 

input layer, one or more hidden layers, and an output layer. MLP is capable of learning complex 

nonlinear functions through backpropagation, making it highly suitable for classification tasks such as 

rice variety identification. Unlike tree-based models, MLPs use neurons and activation functions to 

transform inputs and generate predictions. 
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What is MLP & How It Works: 

MLP works by processing input features through multiple layers of neurons. Each neuron applies a 

weighted sum of its inputs followed by a nonlinear activation function (like ReLU or sigmoid). The 

network adjusts weights during training using the backpropagation algorithm, minimizing the error 

between predicted and actual values through gradient descent. MLP is particularly effective for datasets 

where relationships among features are non-linear and require deep representation. 

Advantages: 

MLP models are powerful in learning from data with complex interdependencies. They offer flexibility 

in architecture design (number of layers, neurons) and can model non-linear relationships better than 

traditional algorithms. Additionally, MLPs generalize well on unseen data when properly regularized 

and optimized. In this research, the MLP model demonstrated improved accuracy and robustness 

compared to XGBoost, proving its suitability for this classification task. 

 

Fig. 2: Architecture of the MLP 

 

4. RESULTS AND DISCUSSIONS 

4.1 Dataset Description 
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The rice‐variety dataset you’re working with is a classic morphological dataset of individual rice grains, 

each described by seven quantitative measurements plus a class label indicating its variety (“Cammeo” 

or “Osmancik”). Every row in the CSV corresponds to one grain, and every column (except the final 

“Class” column) captures a different geometric property extracted from the grain’s silhouette. 

Area (integer): the total count of pixels inside the grain’s outline—essentially its two-dimensional size. 

Perimeter (float): the length of the grain’s boundary in pixels, reflecting how “smooth” or “jagged” the 

edge is. 

Major Axis Length (float): the length of the longest line that can be drawn through the grain, from edge 

to edge—derived by fitting an ellipse to the shape. 

Minor Axis Length (float): the length of the shortest line through the center of that same fitted ellipse. 

Eccentricity (float): a unitless measure of elongation, computed as the ratio between the focal distance 

and major axis of the ellipse; values close to zero indicate a shape near circular, and values near one 

indicate a highly elongated shape. 

Extent Real (float): the fraction of the bounding-box area (the smallest rectangle that fully contains the 

grain) that the grain itself occupies—i.e., (Area ÷ BoundingBoxArea). 

Convex Area (float): the area of the grain’s convex hull, the smallest convex polygon enclosing all 

pixels of the grain. 

The final column, Class, is a categorical label (here encoded later as 0 or 1) that tells you whether the 

sample is a Cammeo grain or an Osmancik grain and so on. Because these three varieties differ subtly 

in size, shape, and outline roughness, these seven features together allow machine-learning algorithms 

to learn distinguishing patterns. In typical usage you have a few hundred to a few thousand grains in 

total; the dataset is first cleaned (any missing entries are set to zero), then split—80% for training and 

20% for testing—followed by standardization so that each feature has zero mean and unit variance 

before it’s fed to classifiers like XGBoost or an MLP. 

4.3 Results and Description 

 

Fig. 3: Xgboost Metrics 

Figure 3 shows that The performance of the XGBoost model indicates moderate effectiveness in 

prediction, with an accuracy of approximately 61.42%, suggesting that the model correctly classifies a 

little over 61% of the total instances. It achieves a precision of 58.69%, meaning that when the model 

predicts a positive outcome, it is correct about 59% of the time. The recall stands higher at 66.26%, 
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showing that the model successfully identifies around 66% of actual positive cases. However, the F1-

score, which balances precision and recall, is relatively lower at 54.78%. 

 

Fig. 4: Confusion matrix of the Xgboost classifier 

Figure 4 shows that confusion matrix for an XGBoost classification model, evaluating its performance 

in distinguishing between two classes: "Cammeo" and "Osmancik". The matrix reveals that the model 

correctly classified 262 instances as "Osmancik" (True Negatives) and 32 instances as "Cammeo" (True 

Positives). However, it misclassified 380 instances of "Osmancik" as "Cammeo" (False Positives) and 

88 instances of "Cammeo" as "Osmancik" (False Negatives). 

 

Fig. 5: Metrics of the MLP (Deep NN) 

Figure 5 shows that the MLP (Multi-Layer Perceptron) model demonstrates strong predictive 

performance with a high accuracy of 92.78%, indicating that it correctly classifies the vast majority of 

instances. Its precision is also impressive at 92.51%, showing that most of its positive predictions are 

correct. The recall is slightly higher at 93.03%, meaning the model effectively captures the majority of 

actual positive cases. With an F1-score of 92.70%, the MLP model exhibits a well-balanced trade-off 

between precision and recall, 
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Figure 9: CM of the Neural network (MLP) 

This confusion matrix illustrates the performance of a classification model, likely different from the 

previous one, in predicting between "Cammeo" and "Osmancik" classes. Here, the model correctly 

identified 312 instances as "Cammeo" (True Positives) and 395 instances as "Osmancik" (True 

Negatives). However, it incorrectly classified 38 instances of "Cammeo" as "Osmancik" (False 

Negatives) and 17 instances of "Osmancik" as "Cammeo" (False Positives). 

5. CONCLUSION  

This study presents a comprehensive approach to rice variety classification using machine learning 

techniques, comparing the performance of XGBoost and a proposed Multi-Layer Perceptron (MLP) 

neural network model. The application is built with a user-friendly interface using Tkinter, enabling 

easy interaction for both administrators and end-users. The rice dataset, characterized by morphological 

features such as Area, Perimeter, Axis Lengths, Eccentricity, and Convex Area, provides a solid basis 

for classification. Extensive data preprocessing including label encoding, handling missing values, 

feature scaling, and exploratory data analysis ensures that the data is well-prepared for modeling. The 

results show that the XGBoost model provides moderate classification performance with an accuracy 

of 61.42%, precision of 58.69%, and an F1-score of 54.78%. In contrast, the proposed MLP model 

significantly outperforms XGBoost, achieving an impressive accuracy of 92.78%, precision of 92.51%, 

recall of 93.03%, and an F1-score of 92.70%. The confusion matrices further confirm the superiority of 

the neural network in accurately distinguishing between the rice varieties "Cammeo" and "Osmancik". 

Overall, this project demonstrates that deep learning models, particularly MLPs, are more effective in 

capturing complex, non-linear relationships within morphological data, thereby providing highly 

reliable classification results. 
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